3

Proving NP-Completeness Results

If every NP-completeness proof had to be as complicated as that for
SATISFIABILITY, it is doubtful that the class of known NP-complete prob-
lems would have grown as fast as it has. However, as discussed in Section
2.4, once we have proved a single problem NP-complete, the procedure for
proving additional problems NP-complete is greatly simplified. Given a
problem IT € NP, all we need do is show that some already known NP-
complete problem I[I' can be transformed to I1. Thus, from now on, the
process of devising an NP-completeness proof for a decision problem [T will
consist of the following four steps:

(1) showing that Il is in NP,

(2) selecting a known NP-complete problem IT',
(3) constructing a transformation f from IT' to I1, and
(4) proving that f is a (polynomial) transformation.

In this chapter, we intend not only to acquaint readers with the end
results of this process (the finished NP-completeness proofs) but also to
prepare them for the task of constructing such proofs on their own. In Sec-
tion 3.1 we present six problems that are commonly used as the ‘‘known
NP-complete problem™ in proofs of NP-completeness, and we prove that

46 PROVING NP-COMPLETENESS RESULTS

these six are themselves NP-complete. In Section 3.2 we describe three
general approaches for transforming one problem to another, and we
demonstrate their use by proving a wide variety of problems NP-complete.
A concluding section contains some suggested exercises.

3.1 Six Basic NP-Complete Problems

When seasoned practitioners are confronted with a problem [I to be
proved NP-complete, they have the advantage of having a wealth of experi-
ence to draw upon. They may well have proved a similar problem ITI' NP-
complete in the past or have seen such a proof. This will suggest that they
try to prove [T NP-complete by mimicking the NP-completeness proof for
11" or by transforming 1I' itsell to 1. In many cases this may lead rather
easily to an NP-completeness proof for I1.

All too often, however, no known NP-complele problem similar to 11
can be found (even using the extensive lists at the end of this book). In
such cases the practitioner may have no direct intuition as to which of the
hundreds of known NP-complete problems is best suited to serve as the
basis for the desired proof. Nevertheless, experience can still narrow the
choices down to a core of basic problems that have been useful in the past.
Even though in theory any known NP-complete problem can serve just as
well as any other for proving a new problem NP-complete, in practice cer-
tain problems do seem to be much better suited for this task. The following
six problems are among those that have been used most frequently, and we
suggest that these six can serve as a ‘‘basic core™ of known NP-complete
problems for the beginner.

3-SATISFIABILITY (3SAT)

INSTANCE: Collection C = {¢},¢9, « - ., ¢,,) of clauses on a finite set U of
variables such that | ¢, [=3for1 < i< m.

QUESTION: Is there a truth assignment for U that satisfies all the clauses
in C?

3-DIMENSIONAL MATCHING (3DM)

INSTANCE: A set M C Wx Xx Y, where W, X, and Y are disjoint sets
having the same number q of elements.

QUESTION: Does M contain a matching, that is, a subset M'C M such
that |M'| = ¢ and no two elements of M" agree in any coordinate?

VERTEX COYER (VQC)

INSTANCE: A graph G = (V,E) and a positive integer K < |V|.
QUESTION: Is there a vertex cover of size K or less for G, that is, a subset
V' C V¥ such that |¥'| £ K and, for each edge (v} € E, at least one of u
and v belongs to V'?

3.1 SIX BASIC NP-COMPLETE PROBLEMS 47

CLIQUE

INSTANCE: A graph G = (V,E) and a positive integer J < | V.
QUESTION: Does G contain a cligue of size J or more, that is, a subset
V' C V such that |V'| = J and every two vertices in V' are joined by an
edge in E7?

HAMILTONIAN CIRCUIT (HC)

INSTANCE: A graph G = (V,E).

QUESTION: Does G contain a Hamiltonian circuit, that is, an ordering

<v,vy,...,v,> of the vertices of G, where n=|V|, such that
{v,,vy} € E and {v,,v,4,) € E forall i, 1<i<n?
PARTITION

INSTANCE: A finite set 4 and a *‘size” s(a) € Z* for each ¢ €4.
QUESTION: Is there a subset A" € A such that

Y sta) = ¥ sa)?

atA a€A-A"

One reason for the popularity of these six problems is that they all ap-
peared in the original list of 21 NP-complete problems presented in [Karp,
1972]. We shall begin our illustration of the techniques for proving NP-
completeness by proving that each of these six problems is NP-complete,
noting, whenever appropriate, variants of these problems whose NP-
completeness follows more or less directly from that of the basic problems.

SATISFIABILITY

ISAT

ra"

3IDM vC

PARTITION HC CLIQUE

Figure 3.1 Diagram of the sequence of transformations used to prove that the six
basic problems are NP-complete.

Our initial transformation will be from SATISFIABILITY, since it is
the only “known’’ NP-complete problem we have so far. However, as we
proceed through these six proofs, we will be enlarging our collection of
known NP-complete problems, and all problems proved NP-complete before
a problem I1 will be available for use in proving that IT is NP-complete.
The diagram of Figure 3.1 shows which problems we will be transforming to
each of our six basic problems, where an arrow is drawn from one problem
to another if the first is transformed to the second. This sequence of

48 PROVING NP-COMPLETENESS RESULTS

transformations is not identical to that used by Karp, and, even when his
sequence coincides with ours, we have sometimes modified or replaced the
original transformation in order to illustrate certain general proof tech-
niques.

3.1.1 3-SATISFIABILITY

The 3-SATISFIABILITY problem is just a restricted version of SAT-
ISFIABILITY in which all instances have exactly three literals per clause.
Its simple structure makes it one of the most widely used problems for
proving other NP-completeness results.

Theorem 3.1. 3-SATISFIABILITY is NP-complete.
Proof: 1t is easy to see that 3SAT € NP since a nondeterministic algorithm
need only guess a truth assignment for the variables and check in polynomi-
al time whether that truth setting satisfies all the given three-literal clauses.
We transform SAT to 3SAT. Let U={uy,u,, ..., u,) be aset of vari-
ables and C=(cy,c3, ..., ¢, be a set of clauses making up an arbitrary in-
stance of SAT. We shall construct a collection C' of three-literal clauses on
a set U’ of variables such that C' is satisfiable if and only if C is satisfiable.
The construction of C’ will merely replace each individual clause ¢; € C
by an “‘equivalent’ collection Cj of three-literal clauses, based on the origi-
nal variables U and some additional variables U} whose use will be limited
to clauses in C;. These will be combined by selting
u;.l
I

m

U=Uuu

j_

and
Ci= L) &
J=1

Thus we only need to show how Cj and U; can be constructed from ¢;.

Let ¢; be given by {zy.2z3, 2} where the z,’s are all literals derived
from the variables in U. The way in which C; and U; are formed depends
on the value of k.

Case 1. k=1. Uj={y},p}|

Ci= {{zry) w2y 5225 w205)
Case 2. k=2. U}={}’;l}. Ci= [[21.22 .y,-j}‘l21-22d_r’jl]]
Case 3. k=3. Uj=¢,C;={l¢}}

3.1 SIX BASIC NP-COMPLETE PROBLEMS 49

Case 4. k>3. Uj={y:1<i<k-3)
C::= [{thliy_;l}] U “}_’;,Zu-z-yfﬂ}: 1 g-“‘-(-.k_‘q']
U [{f,-k_s.zk..hzk”

To prove that this is indeed a transformation, we must show that the
set C' of clauses is satisfiable if and only if C is. Suppose first that
1: U={T,F} is a truth assignment satisfying C. We show that ¢ can be ex-
tended to a truth assignment ¢'; U'—{T, F} satisfying C'. Since the variables
in U'=U are partitioned into sets U; and since the variables in each Uj oc-
cur only in clauses belonging to Cj, we need only show how ¢ can be ex-
tended to the sets U; one at a time, and in each case we need only verify
that all the clauses in the corresponding C; are satisfied. We can do this as
follows: If U; was constructed under either Case 1 or Case 2, then the
clauses in C; are already satisfied by r, so we can extend r arbitrarily to Uj,
say by setting ¢'(y)=T for all y€ Uj. If Uj was constructed under Case 3,
then Uj is empty and the single clause in Cj is already satisfied by (. The
only remaining case is Case 4, which corresponds to a clause
lz1,23. . ..,) from C with k>3. Since ¢ is a satisfying truth assignment
for C, there must be a least integer / such that the literal z is set true
under 7. If 1 is either 1 or 2, then we set ¢'(y)) =F for 1<i<k=3. If [is
either k—1 or k, then we set '(y) =T for 1<i<k-3. Otherwise we set
() =T for 1<i</-2 and 1'(y)) = F for I-1<i<k=3. Itis easy to veri-
fy that these choices will insure that all the clauses in C; will be satisfied, so
all the clauses in C' will be satisfied by . Conversely, if ' is a satisfying
truth assignment for C', it is easy to verify that the restriction of t' to the
variables in U must be a satisfying truth assignment for C. Thus C' is
satisfiable if and only if C is.

To see that this transformation can be performed in polynomial time, it
suffices to observe that the number of three-literal clauses in C' is bounded
by a polynomial in mn. Hence the size of the 3SAT instance is bounded
above by a polynomial function of the size of the SAT instance, and, since
all details of the construction itself are straightforward, the reader should
have no difficulty verifying that this is a polynomial transformation, ®

The restricted structure of 3SAT makes it much more useful than SAT
for proving NP-completeness results. Any proof based on SAT (except for
the one we have just given) can be converted immediately to one based on
3SAT, without even changing the transformation. In fact, the normaliza-
tion to clauses having the same size often can simplify the transformations
we need o construct and thus make them easier to find. Furthermore, the
very smallness of these clauses permits us to use transformations that would
not work for instances containing larger clauses. This suggests that it would
be still more convenient if we could show that the analogous 2-
SATISFIABILITY problem, in which each clause has exactly two literals,
were NP-complete. However, 2SAT can be solved by ‘‘resolution’ tech-

50 PROVING NP-COMPLETENESS RESULTS

niques in time bounded by a polynomial in the product of the number of
clauses and the number of variables in the given instance [Cook, 1971] (see
also [Even, Itai, and Shamir, 1976]), and hence is in P.

3.1.2 3-DIMENSIONAL MATCHING

The 3-DIMENSIONAL MATCHING problem is a generalization of the
classical ‘‘marriage problem’: Given n unmarried men and n unmarried
women, along with a list of all male-female pairs who would be willing to
marry one another, is it possible to arrange n marriages so that polygamy is
avoided and everyone receives an acceplable spouse? Analogously, in the
3.DIMENSIONAL MATCHING problem, the sets W, X, and Y corre-
spond o three different sexes, and each triple in M corresponds to a 3-way
marriage that would be acceptable to all three participants. Traditionalists
will be pleased to note that, whereas 3DM is NP-complete, the ordinary
marriage problem can be solved in polynomial time (for example, see [Hop-
croft and Karp, 1973]).

Theorem 3.2 3-DIMENSIONAL MATCHING is NP-complete.

Proof: 1t is easy to see that 3DM € NP, since a nondeterministic algorithm
need only guess a subset of g=| W|=|X|=| Y| triples from M and check in
polynomial time that no two of the guessed triples agree in any coordinate.

We will transform 3SAT to 3DM. Let U={u,u,, ..., u,} be the set
of variables and C = {cy,c;, . - . , ¢, } be the set of clauses in an arbitrary in-
stance of 3SAT. We must construct disjoint sets W, X, and Y, with
|W|=|X|=|Y]|, and a set M C W x X x Y such that M contains a match-
ing if and only if C is satisfiable.

The set M of ordered triples will be partitioned into three separate
classes, grouped according to their intended function: **truth-setting and
fan-out,”” “‘satisfaction testing,” or ‘‘garbage collection.™

Each truth-setting and fan-out component corresponds to a single vari-
able €U, and its structure depends on the total number m of clauses in
C. This structure is illustrated for the case of m=4 in Figure 3.2. In gen-
eral, the truth-setting and fan-out component for a variable u involves
“internal” elements a,[j/1€X and b,(j1€Y, 1<j<m, which will not occur
in any triples outside of this component, and ‘‘external” elements
w, i), 5, [j1 €W, 1<i<m, which will occur in other triples. The triples
making up this component can be divided into two sets:

T} {(E,-[j].a,[j],b,[j]):I-Sj%m}
T/ (G, Ui, a, 10,6, 1< < m} U (G, [m),a;(1),6,[mD)

I

Since none of the internal elements {a,[j],5,(j): 1 <j< m) will appear in any

3.1 SIX BASIC NP-COMPLETE PROBLEMS 51

ul3]

Figure 3.2 Truth setting component 7; when m =4 (subscripts have been deleted
for simplicity). Either all the sets of 77 (the shaded sets) or all the sets
of T/ (the unshaded sets) must be chosen, leaving uncovered all the
u, 171 or all the (7], respectively.

triples outside of T,=T!U T/, it is easy to see that any matching M’ will
have to include exactly m triples from T, either all triples in 7} or all triples
in T/. Hence we can think of the component T, as forcing a matching to
make a choice between setting u; true and selting u; false. Thus, in gen-
eral, a matching M' € M specifies a truth assignment for U, with the vari-
able u, being set true if and only if M'NT, = T).

Each satisfaction testing component in M corresponds to a single clause
¢;€C. It involves only two “‘internal’’ elements, silj/1€X and s,[jl€Y,
and external elements from (u[j),%;[j]:1<i<n}, determined by which
literals occur in clause ¢;. The set of triples making up this component is
defined as follows:

C, = [(u,[j].s.[j],s;[j]):u,Ecj] U {(ﬁ,-[j],s,[j],s;[j]):ﬁ,-Ecj]

Thus any maltching M’ € M will have to contain exactly one triple from C;.
This can only be done, however, if some u;[j] (or #[;]) for a literal u, €c;
(#;€¢;) does not occur in the triples in 7; N M’, which will be the case if
and only if the truth setting determined by M’ satisfies clause ¢;.

52 PROVING NP-COMPLETENESS RESULTS

The construction is completed by means of one large ‘‘garbage collec-
tion” component G, involving internal elements g [kl€X and g,[k]€Y,
1<k <m(n—1), and external elements of the form u,[j] and &[] from W.
It consists of the following set of triples:

G = {(m [i).g[k),g,lkD), G, [, g, (k) g, [&D):
1<k<mn=1),1<i<n 1< <m)

Thus each pair g,[k], g,[k] must be matched with a unique ;] or &[]
that does not occur in any triples of M'—G. There are exactly m(n—1)
such “‘uncovered’ external elements, and the structure ol G insures that
they can always be covered by choosing M'N G appropriately. Thus G
merely guarantees that, whenever a subset of M — G satisfies all the con-
straints imposed by the truth-setting and fan-out components, then that
subset can be extended to a matching for M.
To summarize, we set

W= {ullaljl:1<isn 1< j<m}
X = A US]_ U G1

where
A= lajl:1€i<n 1< j<m}
S, = (sUl:1<j<m)
G, = leil:1<i<m(n-1}

Y= BUS,UG,
where
1<ign,l
S, = {s,jl: 1< < m)
G, = (gl 1< i<m(n—-1)}

and

m

UG

i=1

M=|UT|U UG

=1

Notice that every triple in M is an element of Wx X XY as required.
Furthermore, since M contains only

2mn + 3m + 2m*n(n—1)

triples and since its definition in terms of the given 3SAT instance is quite
direct, it is easy to see that M can be constructed in polynomial time.

3.1 SIX BASIC NP-COMPLETE PROBLEMS 53

From the comments made during the description of M, it follows
immediately that M cannot contain a matching unless C is satisfiable. We
now must show that the existence of a satisfying truth assignment for C
implies that M contains a matching.

Let 1: U—{T,F} be any satisfying truth assignment for C. We con-
struct a matching M'C M as [ollows: For each clause ¢ €C, let
z € lua:1<i<n} N ¢; be a literal that is set true by r (one must exist
since ¢ satisfies ¢;). We then set

U7 U 7/

tl)=T tlu)=F

M = U U

() (g5 sUD) UG
j=1

where G' is an appropriately chosen subcollection of G that includes all the
¢[k),g,[k), and remaining w;[j]1 and % [j]. It is easy to verify that such a
G' can always be chosen and that the resulting set M’ is a matching. ®

In proving NP-completeness results, the following slightly simpler and
more general version of 3DM can often be used in its place:

EXACT COVER BY 3-SETS (X3C)

INSTANCE: A finite set X with |X|=23¢ and a collection C of 3-element
subsets of X.

QUESTION: Does C contain an exact cover for X, that is, a subcollection
C' € C such that every element of X occurs in exactly one member of c'?

Note that every instance of 3DM can be viewed as an instance of X3C, sim-
ply by regarding it as an unordered subset of WUXUY, and the matchings
for that 3DM instance will be in one-to-one correspondence with the exact
covers for the X3C instance. Thus 3DM is just a restricted version of X3C,
and the NP-completeness of X3C follows by a trivial transformation from
3DM.

3.1.3 VERTEX COVER and CLIQUE

Despite the fact that VERTEX COVER and CLIQUE are independently
useful for proving NP-completeness results, they are really just different
ways of looking at the same problem. To see this, it is convenient to con-
sider them in conjunction with a third problem, called INDEPENDENT
SET.

An independent set in a graph G =(V,E) is a subset V'CV such that,
for all u,v€V', the edge (u,v} is nor in E. The INDEPENDENT SET
problem asks, for a given graph G =(V,E) and a positive integer J<| v,
whether G contains an independent set V' having | V| > J. The following
relationships between independent sets, cliques, and verlex covers are easy
to verify.

54 PROVING NP-COMPLETENESS RESULTS

Lemma 3.1 For any graph G=(V E) and subset V'CV, the following
stalements are equivalent:

(a) V'is a vertex cover for G.

(b) V—V'is an independent set for G.

(¢) V—=V"is a clique in the complement G¢ of G, where G° =(V,E)
with £¢ = {{u,v}: u,v€V and {u,v}£E).

Thus we see that, in a rather strong sense, these three problems might
be regarded simply as “‘different versions'® of one another. Furthermore,
the relationships displayed in the lemma make it a trivial matter to
transform any one of the problems to either of the others.

For example, to transform VERTEX COVER to CLIQUE, let
G =(V.E) and K <|V| constitute any instance of VC. The corresponding
inslzlmcle of CLIQUE is provided simply by the graph G and the integer
J=|V|-K.

This implies that the NP-completeness of all three problems will follow
as an immediate consequence of proving that any one of them is NP-
complete. We choose to prove this for VERTEX COVER.

Theorem 3.3 VERTEX COVER is NP-complete.

Proofi 1L is easy to see thal VC € NP since a nondeterministic algorithm
need only guess a subset of vertices and check in polynomial time whether
that subset contains at least one endpoint of every edge and has the ap-
propriate size.

We transform 3SAT to VERTEX COVER. Let U={uj,u, . .., u,}
and C=[c1,¢2,Cy) be any instance of 3SAT. We must construct a
graph G = (V,E) and a positive integer K < | V] such that G has a vertex
cover of size K or less if and only if C is satisfiable.

As in the previous proof, the construction will be made up of several
components. In this case, however, we will have only truth-setting com-
ponents and satisfaction testing components, augmented by some additional
edges for communicating between the various components.

For each wvariable 1, €U, there is a truth-setting component
T,=(V,,E), with ¥V, ={u, 7} and E;={{u;, %]}, that is, two vertices joined
by a single edge. Note thal any vertex cover will have to contain at least
one of u; and #; in order to cover the single edge in E;.

For each clause ¢;€C, there is a satisfaction testing component
S, =(V},E)), consisting of three vertices and three edges joining them (o
form a triangle:

Vi = la\lj),a:lj) a3}
E} = [{a,[j],az[j]],{a,[j].a;[j”,{ﬂz[f]-ﬂs[j”]

3.1 SIX BASIC NP-COMPLETE PROBLEMS 55

Note that any vertex cover will have to contain at least lwo vertices from V]
in order to cover the edges in Ej.

The only part of the construction that depends on which literals occur
in which clauses is the collection of communication edges. These are best
viewed from the vantage point of the satisfaction testing components. For
each clause ¢;€C, let the three literals in ¢; be denoted by x;, y;, and z;.
Then the communication edges emanating from S; are given by:

E; = {{mUl.x,.-}.lﬂz[j],yj'r.{ag[j],z_;”
The construction of our instance of VC is completed by setting
K= n+2mand G=(V,E), where
v=J ¥ ulyn
i= j=1
and
E= (UE,) u(y Ej) U (UE}')
i=1 =1 =

Figure 3.3 shows an example of the graph obtained when U=luy,u, (3, gl
and C = [{u,,ﬁ;,ﬁq},[ﬁhug.54}}.

wy, W My dy Wy Uy Uy Kf4
a;[ll / 02l2]

a, (1] asl1] al'[_?.l as[2]

Figure 3.3 VERTEX COVER instance resulting from 3SAT instance in which
U= [Hh!h.ﬁ'),lfd. C= {u;,ﬁ;.ﬁ.,],[ﬁ,.uz.E.,}l. Here K=n+2m=8.

It is easy to see how the construction can be accomplished in polyno-
mial time. All that remains to be shown is that C is satisfiable if and only if
G has a vertex cover of size K or less.

First, suppose that V'CV is a verlex cover for G with |V'|<K. By
our previous remarks, ¥' must contain al least one vertex from each T} and
al least two vertices from each ;. Since this gives a total of at least
n+2m =K vertices, V' must in fact contain exactly on¢ vertex from each
T, and exactly two vertices from each S;. Thus we can use the way in
which V' intersects each truth-setting component (0 obtain a truth assign-
ment - U—(T.F). We merely set t(u)=T if €V’ and t(w)=F if

56 PROVING NP-COMPLETENESS RESULTS

u,€ V', To see that this truth assignment satisfies each of the clauses ¢;€ C,
consider the three edges in E;. Only two of those edges can be covered by
vertices from Vj N V', so one of them must be covered by a vertex from
some ¥, that belongs to ¥'. But that implies that the corresponding literal,
either u; or u;, from clause ¢, is true under the truth assignment r, and
hence clause c; is satisfied by 1. Because this holds for every ¢;€C, it fol-
lows that r is a satisfying truth assignment for C.

Conversely, suppose that : U—(T,F) is a satisfying truth assignment
for C. The corresponding vertex cover V' includes one vertex from each
T, and two vertices from each S;. The vertex from 7, in V' is u, if
t(1,) =T and is u, if r(u;) = F. This ensures that at least one of the three
edges from each set Ej' is covered, because ¢ satisfies each clause ;.
Therefore we need only include in V' the endpoints from S; of the other
two edges in E} (which may or may not also be covered by vertices from
truth-setting components), and this gives the desired vertex cover. ®

SEMNAR O

3.1.4 HAMILTONIAN CIRCUIT

In Chapter 2, we saw that the HAMILTONIAN CIRCUIT problem can
be transformed to the TRAVELING SALESMAN decision problem, so the
NP-completeness of the latter problem will follow immediately once HC has
been proved NP-complete. At the end of the proof we note several variants
of HC whose NP-completeness also follows more or less directly from that
of HC.

For convenience in what follows, whenever <v;,vy,...,v,> is a
Hamiltonian circuit, we shall refer to {v,,v,.4}, 1<i<n, and {v,,v,} as the
edges ‘‘in” that circuit. Our transformation is a combination of two
transformations from [Karp, 1972], also described in [Liu and Geldmacher,
1978].

Theorem 3.4 HAMILTONIAN CIRCUIT is NP-complete

Proof* 1t is easy to see that HC € NP, because a nondeterministic algorithm
need only guess an ordering of the vertices and check in polynomial time
that all the required edges belong to the edge set of the given graph.

We transform VERTEX COVER to HC. Let an arbitrary instance of
VC be given by the graph G = (V,E) and the positive integer K < |V|. We
must construct a graph G'=(V',E’) such that G' has a Hamiltonian circuit
if and only if G has a vertex cover of size K or less.

Once more our construction can be viewed in terms of components
connected together by communication links. First, the graph G' has K
“‘selector™ verlices ay,a,, . .. ,ax, which will be used to select K vertices
from the vertex set V for G. Second, for each edge in E, G' contains a
‘‘cover-testing’” component that will be used to ensure that at least one
endpoint of that edge is among the selected K vertices. The component for

3.1 SIX BASIC NP-COMPLETE PROBLEMS 57

e={u,v) € E is illustrated in Figure 3.4. It has 12 vertices,
V. = {(u,e,),(v,e,):1<i<6)
and 14 edges,
E! = {{CGu,e.),(u,e,i+1)}, ((v.e.)),(v,e,i+1)}:1<i<5)
U {ltw,e,3).(v,e.D), [(v,e,3),(u,e, DY}
U {{(u,e,6),(v.e.8), ((v,€,6),(u,e,4)})

(t,e,1)

(u,e,2) \\ (v,e,2)
(u.e,3) (v.e.3)
(1,e,4) \ (v,e.4)

(u,e,5) (v,e,5)

(u,e,6) \ (v,e,6)

Figure 3.4 Cover-lesting component [or edge e = {u,v] used in transforming
VERTEX COVER to HAMILTONIAN CIRCUIT.

(v,e,1)

In the completed construction, the only vertices from this cover-lesting
component that will be involved in any additional edges are
(u,e,1), (v,e,1), (u,e,6), and (v,e,6). This will imply, as the reader may
readily verify, that any Hamiltonian circuit of G' will have to meet the
edges in E, in exactly one of the three configurations shown in Figure 3.5,
Thus, for example, if the circuit “enters™ this component at (u,e,1), it will
have to “‘exit’ at (u,e,6) and visit either all 12 vertices in the component
or just the 6 vertices (u, e, i), 1<i<6.

Additional edges in our overall construction will serve to join pairs of
cover-testing components or 1o join a cover-testing component Lo a selector
vertex. For each vertex v € V, let the edges incident on v be ordered (arbi-
trarily) as e,), €als - - + » Coldee(v))» Where deg(v) denotes the degree of v in
G, that is, the number of edges incident on v. All the cover-testing com-
ponents corresponding to these edges (having v as endpoint) are joined
together by the following connecting edges:

E,: = [[(1',9,[,],6),(1’,8,.[,-4.”,l)}: l-.{i<deg(v)]

As shown in Figure 3.6, this creates a single path in G' that includes exactly
those vertices (x,y,z) having x =v.

58 PROVING NP-COMPLETENESS RESULTS

- - - -

\‘ \‘ 'I 'I
(u,e,1) (1,e,1) (v.e,l) (v.e,l)
(u,e,6]’, (u,e.ﬁ)', ‘\(v,e‘ﬁl “(v,e‘ﬁ)

@ =T ©

Figure 3.5 The three possible configurations of a Hamiltonian circuit within the
cover-lesting component for edge e = {u, v}, corresponding to the cases
in which (a) u belongs to the cover but v does not, (b) both u and v
belong to the cover, and (c) v belongs to the cover but u does not.

The final connecting edges in G' join the first and last vertices from
each of these paths to every one of the selector vertices ay,a;, ..., ax.
These edges are specified as follows:

E" = [{a,-.(v,e,“],l)},{a,-.(v,ev[d,g(,”,ﬁ)}: 1<i<K, veV)
The completed graph G' = (V',E") has

V' = la;:1<i<K) U (| V)
eEE

and

Eu

It

CUEY VL) -E) O E

133 veV

It is not hard to see that G' can be constructed from G and K in polyno-
mial time.

We claim that G’ has a Hamiltonian circuit if and only if G has a ver-
tex cover of size K or less. Suppose <vy,vy, ..., ¥,>, where n = | V'], is
a Hamiltonian circuit for G'. Consider any portion of this circuit that
begins at a vertex in the set {ay,ay, .. .,ax), ends at a vertex in
lay,ay, . . ., ax}, and that encounters no such vertex internally. Because of
the previously mentioned restrictions on the way in which a Hamiltonian
circuit can pass through a cover-testing component, this portion of the cir-
cuit must pass through a set of cover-ltesting components corresponding to
exactly those edges from E that are incident on some one particular vertex
v€V. Each of the cover-testing components is traversed in one of the
modes (a), (b), or (c) of Figure 3.5, and no vertex from any other cover-
testing component is encountered. Thus the K vertices [rom
laj,ay, ..., ax) divide the Hamiltonian circuit into K paths, each path

3.1 SIX BASIC NP-COMPLETE PROBLEMS 59

('-’»C’p[]].l}

(1’,8,.[11.6)

{v‘evm,l)

(V‘cvl.ﬂ'ﬁ)

(v,(“,[“\l} -~
(v.e,(geg(m1s 1)

(v,ey deg(n1>6)

Figure 3.6 Path joining all the cover-testing components for edges from E having
vertex v as an endpoint.

corresponding to a distinct vertex v€ V. Since the Hamiltonian circuit must
include all vertices from every one ol the cover-testing components, and
since vertices from the cover-ltesting component for edge e€E can be
traversed only by a path corresponding to an endpoint of e, every edge in E
must have at least one endpoint among those K selected vertices. There-
fore, this set of K vertices forms the desired vertex cover for G.
Conversely, suppose V*CV is a vertex cover for G with [V*| < K.
We can assume that | V*| =K since additional vertices from ¥ can always
be added and we will still have a vertex cover. Let the elements of V7 be
labeled as vy,v,, . ..,vx. The following edges are chosen (o be “in" the
Hamiltonian circuit for G'. From the cover-lesting component representing
each edge’e = {u,v) € E, choose the edges specified in Figure 3.5(a), (b), or
(c) depending on whether {u,v} N V* equals, respectively, {u}, {u,v], or
(v]. One of these three possibilities must hold since V* is a verlex cover
for G. Next, choose all the edges in Ev: for 1<i<K. Finally, choose the

edges
{a,,(v,, ev‘m,i)},l\éiéf(

60 PROVING NP-COMPLETENESS RESULTS

(i1, (s € faeg 1, O), 1T <K
and
Lay, (ks ey T (a1 O

We leave to the reader the task of verifying that this set of edges actually
corresponds to a Hamiltonian circuit for G'. ®

Several variants of HAMILTONIAN CIRCUIT are also of interest.
The HAMILTONIAN PATH problem is the same as HC except that we
drop the requirement that the first and last vertices in the sequence be
joined by an edge. HAMILTONIAN PATH BETWEEN TWO POINTS is
the same as HAMILTONIAN PATH, except that two vertices u and v are
specified as part of each instance, and we are asked whether G contains a
Hamiltonian path beginning with & and ending with v. Both of these prob-
lems can be proved NP-complete using the following simple modification of
the transformation just used for HC. We simply modify the graph G'
obtained at the end of the construction as follows: add three new vertices,
ag, axsy, and axyr, add the two edges lag,a;} and {ayi.ax.al, and
replace each edge of the form {a,(v, €,(ge (1 6)) bY {@k 41, (V, €y 1see (1. O -
The two specified vertices for the latter variation of HC are ag and a4, .

All three Hamiltonian problems mentioned so far also remain NP-
complete if we replace the undirected graph G by a directed graph and
replace the undirected Hamiltonian circuit or path by a directed Hamiltonian
circuit or path. Recall that a directed graph G = (V,4) consists of a vertex
set ¥ and a sel of ordered pairs of vertices called arcs. A Hamiltonian path
in a directed graph G =(V,A4) is an ordering of V as <vyvy, ..., v,>,
where n=|V/|, such that (v,,v,,,) € 4 for 1<i<n. A Hamiltonian circuit
has the additional requirement that (v,,v)) € A. Each of the three
undirected Hamiltonian problems can be transformed to its directed coun-
terpart simply by replacing each edge {u,v} in the given undirected graph by
the two arcs (u,v) and (v,u). In essence, the undirected versions are
merely special cases of their directed counterparts.

SEMIN AENO
3.1.5 PARTITION

In this section we consider the last of our six basic NP-complete prob-
lems, the PARTITION problem. It is particularly useful for proving NP-
completeness results for problems involving numerical parameters, such as
lengths, weights, costs, capacities, etc.

Theorem 3.5 PARTITION is NP-complete
Proof: 1t is easy to see that PARTITION € NP, since a nondeterministic al-
gorithm need only guess a subset A4’ of A4 and check in polynomial time

3.1 SIX BASIC NP-COMPLETE PROBLEMS 61

that the sum of the sizes of the elements in A’ is the same as that for the
elements in A—A4".

We transform 3DM to PARTITION. Let the sets W, XY, with
|W|=|X|=|Y|=gq,and M C Wx X x Y be an arbitrary instance of 3DM.
Let the elements of these sets be denoted by

W= [w],wz. s wq}

X = {x1,5, 0 ooiky)

Y=y yaie ozl
and

M={m,m, ..., m}

where k=|M|. We must construct a set 4, and a size s(a) € Z* for each
a€ A, such that 4 contains a subset 4’ satisfying

Y sta) = Y s(a)
a€A’ atA—=A"
if and only if M contains a matching.

The set A will contain a total of k+2 elements and will be constructed
in two steps. The first k elements of A are {a;: 1<i<k], where the ele-
ment g, is associated with the triple m,€ M. The size s(a;) of a; will be
specified by giving its binary representation, in terms of a string of 0’s and
I’s divided into 3¢ *‘zones™ of p = [logy(k+1)] bits each. Each of these
zones is labeled by an element of W U X U Y, as shown in Figure 3.7.

.
.

[I T T == T
“"1. Wz en W{

g X1 X2 e Xg Vi Pz over Yy

2

Figure 3.7 Labeling of the 3¢ ‘‘zones,” each containing p = [log,(k+1)] bits
of the binary representation for s(a), used in transforming 3DM to
PARTITION.

The representation for s(a;) depends on the corresponding triple
m; = (wf(,-),xxc,),y,,(,-))e M (where f,g,and h are just the functions that
give the subscripts of the first, second, and third components for each m;).
It has a 1 in the rightmost bit position of the zones labeled by wy(), X,
and y,(,y and 0's everywhere else. Alternatively, we can write

s(a) = 2pBg=s() 4 2pQ2q—g()) 4 2,':(:,'—.!:(:'})
i

Since each s(a;) can be expressed in binary with no more than 3pg bits, it

vz PROVING NP-COMPLETENESS RESULTS

is clear that s(a;) can be constructed from the given 3DM instance in poly-
nomial time.

The important thing to observe about this part of the construction is
that, if we sum up all the entries in any zone, over all elements of
(a,-:]ér‘ék], the total can never exceed k=2°—1. Hence, in adding up
Laca s(a) for any subset 4’ C {a;: 1<i<k}, there will never be any *‘car-
ries’’ from one zone to the next. It follows that if we let

(which is the number whose binary representation has a 1 in the rightmost
position of every zone), then any subset A’ C {a;: 1 <i< k) will satisfy

Y s(a) =B
acA'
if and only if M'= {m,: a,€ A"} is a matching for M.
The final step of the construction specifies the last two elements of A.
These are denoted by b, and b, and have sizes defined by

2 i s(a,)

S(b]) - B

and

i s(a)| + B

i=1

S(b;)

Both of these can be specified in binary with no more than (3pg+1) bits
and thus can be constructed in time polynomial in the size of the given
3DM instance.

Now suppose we have a subset A’ C 4 such that

Yst@ = ¥ s(a)

a€A’ aEA-A'
Then both of these sums must be equal to 2¥. X, 5(4,), and one of the two
sets, A’ or A—A', contains b; but not b,. It follows that the remaining ele-
ments of that set form a subset of {g;: 1 <<k} whose sizes sum to B, and
hence, by our previous comments, that subset corresponds to a matching
M' in M. Conversely, if M'CM is a matching, then the set
{6y} U {a;: m;€ M'} forms the desired set A" for the PARTITION instance.
Therefore, 3DM o« PARTITION, and the theorem is proved. ®

